
Multicloud-Based Evacuation Services for
Emergency Management

言語: eng

出版者: IEEE

公開日: 2019-06-27

キーワード (Ja):

キーワード (En): cloud, evacuation services, emergency

management, multiple cloud

作成者: 董, 冕雄, 李, 鶴, 太田, 香, YANG, Laurence T.,

ZHU, Haojin

メールアドレス:

所属:

メタデータ

http://hdl.handle.net/10258/00009926URL

1

MCES: Multi-cloud Based Evacuation Services for
Emergency Management

Mianxiong Dong, He Li, Kaoru Ota, Laurence T. Yang, and Haojin Zhu

Abstract—A smart evacuation needs a scalable and
flexible system to provide service in both emergency and
normal situation. A single cloud service is usually limited
to support scaling up requirement in emergency especially
with a large geographic scope. In this article, we propose
MCES, a multi-cloud architecture that deploy the smart
evacuation services in multiple cloud providers, which can
tolerant larger pressure than single cloud-based services.
Usually, this system maintains basic service to support
monitoring, while in emergency, the visits to the service
will scale up enormously. This means MDSE supports fast
scaling up service capacity in a short time. We use a three
layer cloud instance management to support rapid capacity
scaling up in MCES. By conducting extensive simulations,
we demonstrate that our proposed MCES significantly out-
performs single cloud solutions under various emergency
settings.

Index Terms—Evacuation Services; Emergency Man-
agement; Multiple Cloud.

I. RELATED WORKS

A. Cloud-based Evacuation Services
There some existing works propose prototypes

that adopt cloud computing in the evacuation sys-
tem. Chu et al. [1] present a hybrid building fire
evacuation system with mobile phones and cloud
computing. In their prototype, they put the rout
computing into the cloud service and use mobile
phone to get the sensor information. However, they
only move the evacuation services from local to the
cloud simply without any consideration about the
emergency management.

Chen et al. [2] present a system about rescue
service with mobile cloud computing. From their
work, the rescue system is similar with evacuation
system which needs a rescue service to find the
evacuation route and also need the information from

Mianxiong Dong and Kaoru Ota are with Muroran Insitute of
Technology, Japan.

He Li is with Huazhong University of Science and Technology,
China.

Laurence T. Yang is with St Francis Xavier University, Canada.
Haojin Zhu is with Shanghai Jiao Tong University, China.

sensors. As the prototype in their work, they also
focus on the mobile client rather than the cloud
services.

Ahn et al. [3] propose another mobile evacuation
system named RescureMe. They provide a video-
based evacuation interface and also adopt the cloud
service to calculate the exit route. Similar with other
works, even though they design their work on cloud
services, they consider the cloud resources as same
as the local servers.

Ling et al. [4] propose a cloud service-oriented
visual prototype system for regional crowd evacu-
ation. They add the service-oriented idea to their
prototype and consider the scenario about evacua-
tion as cloud services. Even though their modeling
include the cloud-oriented factor, it is hard to find
the different with the traditional evacuation systems.

B. Multi-cloud Service

Multiple cloud service is a service based more
than one cloud platform. Since the limitations with
single cloud platform, many existing work focus
on the scheduling between multiple cloud platform.
Chaisiri et al. [5] propose an optimal algorithm
to placement virtual machine to multiple cloud
providers to minimize the cost spending. In their
modeling, enough though they analyze different
payment planes with various demands, they only
consider the constraints statically, which is not an
appropriate method for the evacuation scenario.

Many similar research present many modeling
with different constraints and requirement on the
scheduling with multiple cloud platforms. Bossche
et al. [6] study a modeling to minimize cost of
external provision in a hybrid clouds. They focus on
different workloads including deadline-constrained
and non-migratable, and incorporate different re-
sources in a binary integer programming problem
formulation. Breitgand et al. [7] also propose some
integer programing formulations for placement of

2

VM workloads with a cloud as well as across
multiple clouds collaborating. Meanwhile, they also
provide a framework prototype combined with poli-
cies for load balancing and consolidation. In their
prototype, they also develop a 2-approximation for
scalability based on linear rounding. Ferreto et al.
[8] study different greedy algorithm to placement
VMs between various server consolidation schemes
and give an experimental evaluation to demon-
stratethat greedy algorithms perform well in terms
of number of physical machines used and VMs
migrated. These work focus on the general scenario
of VM placement without consideration about the
price alters sharply between different statuses of in-
stances. Meanwhile, without the consideration about
the workload sudden increase, it is hard to apply
their models to the evacuation service in emergency.

II. INTRODUCTION

W Ith the rapid development of the cloud comp-
tuing, many services are migrated to the

cloud for better scalability, cost efficiency and other
benefits [9] [10] [11]. Cloud computing is also an
appropriate environment for deployment of evacua-
tion services. Some cloud-based evacuation services
move the main computing and numerous data to the
cloud and provide services to users [12] [1].

If the evacuation system utilizes cloud comput-
ing as an external system performing calculation
to determine the location of the client and then
provide a possible evacuating route, the client can
receive the estimated location and evacuating route
to display with very short time. In addition, the
system can provide calculation for all the people
in the disaster place to determine their locations
simultaneously, and assign various evacuating route
to avoid congestion. The information of the disaster
scene can also be shared with disaster relief.

Even though the cloud-based evacuation system
can provide better service than before, maintain-
ing full service capacity in the cloud platform to
response emergent situations especially the large-
scale disaster is expansive. As a result, the cloud-
based evacuation system usually use a part of ser-
vice instances to monitor the sensors and provide
some basic services. When the disaster happens,
the evacuation system will launch as many service
instances as possible to meet the potential pressure
to providing evacuation services for a large number

of users. Unfortunately, since the I/O limitation in
most cloud providers, it is hard to launch enough
instances concurrently in a short period with sin-
gle cloud platform [13]. It means the cloud-based
evacuation system needs to maintain more active
instances in normal times.

To focus that issue, we propose MCES, a multiple
cloud platforms based evacuation system, which can
provide better management than single cloud with
lower cost in emergency. Different from single cloud
architecture, MCSE uses computing resources from
multiple cloud platform [14] or providers, which can
provide better scalability and concurrency. There-
fore, in emergency, MCSE can launch much more
cloud instances concurrently between multiple cloud
platform than single cloud evacuation system. As a
result, the normal maintenance only needs to rent
the active instance for the basic services.

Based on the proposed design, we then study how
to deploy instances to a set of cloud platforms such
that capacity service is maximum in emergency.
This deployment problem has several challenges.
First, each cloud may have a different capacity of
instances. We need to deploy instances no more
than the capacity of each cloud platform. Second,
the concurrency to launch instances is also different
between cloud platforms. To guarantee the response
quickly in emergency, we need to consider the
concurrency of each cloud platform when deploy
the standby instances. Third, the number of active
instances need to meet the requirement of the main-
tenance and the cost of active instances are much
expensive than standby instances. We need to deploy
instances with limited budget with enough active
instances.

The main contributions of this paper are summa-
rized as follows.
• First, we propose a multiple cloud evacuation

architecture, in which the service instances are
deployed in multiple cloud platforms.

• Second, we study a instance deployment prob-
lem to maximum the service capacity in emer-
gency while satisfying the service budget, in
terms of the required maintenance capacity of
active instances, the capacity and concurrency
of each platform. We propose an efficient algo-
rithm to solve the controller assignment with a
good result ratio with the optimal assignment.

• Finally, we evaluate our work with experiments
on a prototype and simulations.

3

The rest of this paper is summarized as follows.
Section I reviews the related work. Section III
presents the system design and problem formula-
tion. An efficient algorithm is proposed in Section
IV. Section V gives the simulation results. Finally,
Section VI concludes this paper.

III. FRAMEWORK AND PROBLEM STATEMENT

In this section, we fist brief MCES framework
and the instance statuses in the cloud platform.
Then, we state the instance deployment in MCES
for emergency management.

A. MCES Framework

MCES

Cloud Cloud Cloud

user user user user user user

Sensors Sensors
Sensors

Fig. 1: Motivation of MCES

As shown in Fig. 1, we briefly introduce the
MCES framework. For better flexibility for the
evacuation services, we adopt the cloud model
names Infrastructure as a service (IaaS) in which
we can deploy evacuation services to the powerful
instances provided by the cloud platform. Therefore,
the MCES framework deploys and managements
instances in multiple cloud platforms. The instances
provide services to users and monitor the sensors
to analyze the situation of the environment both in
normal times and emergency. The users access these
instances directly after a simple authentication in the
service portal.

When the disaster happens, the MCES will launch
the standby instances in all cloud platforms to meet
potential pressure form a large number of users.
These service instances response the access and
analyze the evacuate route for each users as soon
as possible with the data from sensors. While in
normal times, it is no need to maintain too much
active instances for service maintenances and sensor

monitoring. Therefore, MCES will sleep or delete
most instances launched in emergency and only
maintain a small number of active instances for the
basic services.

Even though the evacuation service store little
personal information and other private data, we
add a security module in each instance to protect
some potential leakage or other attack. The security
module includes a user authentication and user
space isolation. Before the service begins, all users
need to take a simple step to log in to the center
management of MCSE. All user information is
management by centralized management server. To
isolate the user space, we use a sandbox mechanism
in each instance. For each user, accessible services
are encapsulated in single sandbox.

B. Instance Statuses

Reboot

Service stopped

Snapshot

Start Ready

Fig. 2: Status transitions of the cloud instances

Since the MCES will transit instances between
normal times and emergency, we describe the in-
stance statuses in cloud platforms. Usually, in ex-
isting cloud platform, each instance have several
statuses including Start, Ready, Service, Reboot,
Stopped, Snapshot, etc., as shown in Fig. 2. When
an instance created, it is in the Start status, which
means it is start the basic functions like the op-
erating system or other modules. This status will
take a short period from tens of seconds. After start
status, the instance enters the status of Ready to
wait for the services beginning. After the needed
services start, the instance enters the Service status
for providing services. When some problems happen
and the instance need to reset its services, the status
will be transited to Reboot and after tens of second
become to Ready. If the service need to be stopped,
the instance will be shut down then transited to
stopped status. In many cloud platforms, if a in-
stance stopped, it will delete the data of this instance
to release the resource. To focus this procedure,

4

tenants will backup the data of the stopped instance
as a snapshot stored in the cloud platform.

In these statuses, there are only three stable
statuses, Ready, Service and Snapshot. These sta-
tuses of instances means different cost. Instances
in the snapshot status have the lowest fee since
it only needs storage space to store the snapshot.
Instances in Ready status have less cost than those in
Service status. Usually, the different of cost between
Ready and Service is much smaller than the dif-
ferent between Ready and Snapshot. For example,
in google compute platform, the snapshot storage
cost 0.125 dollars per GB/Month while a standard
instance needs from 32 to 508 dollars. Meanwhile,
the instances usually needs more budget on the cost
of CPU time and disk I/O. Therefore, to maintain
the lowest cost after Start status, MCES will turn the
instances in Ready status to sleeping. In the rest of
this paper, we use sleeping instead of Ready status
to denote the instances wait for services beginning.

C. The IDME Problem

TABLE I: Notations in the state cycle problem

Notation Description
C Clouds in the network
ci Cloud i
Bi Capacity of cloud i
Ti Latency between cloud i and user
Dri Instance running cost in cloud i
Dsi Instance sleep cost in cloud i
Ddi Instance snapshot cost in cloud i
Lsr Instance waking time in cloud i
Lds Instance creation time in cloud i
Ksi Instance waking concurrency of cloud i
Kdi Instance creation concurrency of cloud i
Si Instance service capacity in cloud i
Xi Service node number in cloud i
Yi Sleep node number in cloud i
Zi Snapshot node number in cloud i
D Budget of the evacuation services
L Total latency
D Service maintenance cost
L Required maximum response time in emergency
Bi Instance number of cloud i
Sm Service capacity for normal maintenance

We consider a MCES framework as show in Fig.
3

We use three values, Xi, Yi and Zi, to denote the
three different number of instances in three status.

Therefore, we define D to denote the budget of
the evacuation service shown in (3).

Since the evacuation service need to response the
emergency quickly, as shown as (1), we defined

Lr to denote the maximum time to transit sleeping
instances and snapshots to running instances for the
requirement in emergency.

max
i=1,2,...,|C|

[(d Yi

Ksi
e+ d Zi

Ksi
e)Lsr + d

Zi

Kdi
eLds] ≤ L (1)

We use Nsi ← Lsr

Ksi
and Ndi ← Nsi+

Lds

Ldi
to simplify

(1) as (4).
Meanwhile, we can not deploy instances exceed

the capacity of the cloud service. We use Bi to
denote the maximum service capacity of cloud i as
shown in (5).

In the normal time, for maintains of the data col-
lection, sensor management and other processing,
it needs some running instances in the evacuation
service. To simplify the problem, we use simple
model [15] to describe the environment for sensor
located. Therefore, , we use Sm to denote request
for maintain the normal service and the minimum
service capacity should satisfy (6).

With multiple cloud platform, we can get a larger
service capacity than single cloud environment. We
use St to denote the total service capacity of MCES
shown in (2).

Maximize: St =
|C|∑
i=1

[(Xi + Yi + Zi)Si] (2)

Subject to:
|C|∑
i=1

(XiDri + YiDsi + ZiDdi) ≤ D (3)

|C|∑
i=1

(YiNsi + ZiNdi) ≤ L (4)

Xi + Yi + Zi ≤ Bi (5)
|C|∑
i=1

(XiSi) ≥ Sm (6)

The problem of instance deployment in MCES
for emergency management (IDME): given a set
of cloud platforms, the IDME problem attempts to
built maximum service capacity in emergency by
deploy instances from multiple cloud platforms with
limited budget. Meanwhile, this service can support
normal maintains and response emergency quickly
with enough average QoS.

D. Hardness analysis
Theorem 1: The instance deployment problem is

NP-hard.

5

Proof: The bounded knapsack problem
problem: given a set of item kinds {a1, a2, ...an},
each kind of items ai with a value vi and a weight
wi, and the maximum weight that we can carry in
the bag is W (W <

∑n
i=1 wi), is there a knapsack

scheme such that maximum the sum of values of
the items in the bag and the sum of weight must be
no more than W while the number of each kind of
items is no more than ci?

For each item ai with a value vi and weight wi,
we create a cloud platform with a cost set Dri = wi,
Dsi = 0 and Ddi = 0, a value Si = vi, a instance
waking time Lsr > L, a instance creation time
Lds > L, a capacity Bi = ci, and a maintain
capacity require Sm = 0. Therefore, the constraints
and the service capacity of the IDME problem are
as flows.

Maximize: St =
n∑

i=1

Xivi (7)

Subject to:
n∑

i=1

Xiwi ≤ D (8)

Xi ≤ ci (9)

We first suppose a solution that the bounded knap-
sack problem that we choose a set {X1, X2, ...Xn}
of items from {a1, a2, ...an} and the sum of the item
value is maximum. In the corresponding solution of
the controller assignment problem, we choose Xi

instance from each cloud platform Ci, and the total
cost of the instances is less than W .

We then suppose that the instance deployment
problem has a solution that a set of Xi instances
is selected from each cloud platform Ci. From the
equation (8) and (7), the set of Xi forms a solution
of the bounded knapsack problem.

It is easy to see that the instance deployment
problem is in NP class as the objective function
associated with a given solution can be evaluated
in a polynomial time. Thus, we conclude that the
controller assignment problem is NP-hard.

IV. SOLVING THE IDME PROBLEM

In this section, we propose an algorithm, called
instance status cycle deployment (ISCD) algorithm,
to solve the IDME problem. Its basic idea is to
organize the cloud instances in three layers includes
service, sleep and snapshot shown in figure 3. With
these three layers, we can use different strategies to
make a leverage to balance the time complex and
algorithm performance.

MCES

Service node

Sleep node

Snapshot

Fig. 3: Status cycle scheduling

For the service layer, considering the cost of the
service instances is most expensive than those in
other two status, the algorithm deploys the instances
in the service level first. Considering the Xi � Yi

and Xi � Zi usually, we use a greedy strategy
to choose the most cost efficiency instance for the
maintain service.

Algorithm 1 Greedy deployment for the service
layer

1: Sort cloud platform in C ′ = {cΠ1 , cΠ2 , .., cΠ|C′|
}

such that DrΠ1

SΠ1
≤ DrΠ2

SΠ2
≤ ... ≤

DrΠ|C′|
SΠ|C′|

;

2: for i from 1 to |C ′| do
3: Xi ← 0, Yi ← 0 and Zi ← 0;
4: end for
5: i← 1;
6: while

∑|C′|
i=0(IsSi) < Sm do

7: Xi ← 0;
8: if Xi > Bi then
9: i← i+ 1;

10: end if
11: end while

In the sleep layer, since the required node are
more than that in the service layer, the deploy-
ment will influent the performance more obviously.
Meanwhile, low efficient deployment result in the
sleep layer will also increase the response time. As
mentioned in Section III, the IDME problem has
four constraints in (3)(4)(5)(6). Fortunately, since
the sleep nodes can not participate into the service
maintenance, the constraint (6) will not affect the
deployment in the sleep layer. But three constraints
complicate the problem for higher efficient problem.
Therefore, for leveraging the time complex and

6

algorithm efficiency, we choose another strategy
based on simulated annealing. From the existing
analysis of 0-1 knapsack problem [16], we choose a
strategy based on the simulated anneling approach
which is a suitable solution for knapsack problem
with acceptable time complex. We define the energy
function as follows.

E(Y) =

|C|∑
i=1

YiSi

We also use a function F (Y) to get the total
latency of the deployment of Y .

Algorithm 2 Simulated annealing for the sleep layer

1: Ysleep ← ∅;
2: for ci in C do
3: Yi = randInt(0, Bi −Xi);
4: Ysleep ← Ysleep

⋃
Yi;

5: end for
6: E ← E(Ysleep);
7: L← L(Ysleep);
8: for k in range(0, kmax) do
9: Y ′sleep ← neighbour(Ysleep);

10: E ′ ← E(Y ′sleep);
11: L′ ← L(Y ′sleep);
12: if E ′ > E and L′ < L then
13: Ysleep ← Y ′sleep;
14: else if E ′ > E and L′ ≥ L and L′ < L then
15: P ← e

L−L′
L ;

16: if randF loat(0, 1) > P then
17: Ysleep ← Y ′sleep;
18: end if
19: else if E ′ < E and L′ < L then
20: P ← e

E′−E
E′ ;

21: if randF loat(0, 1) > P then
22: Ysleep ← Y ′sleep;
23: end if
24: end if
25: end for

For the snapshot level, we design a dynamic
programming to select instance from the cloud plat-
forms. We use a function Snapshotpack to process
each cloud i in all cloud platform. In function
Snapshotpack, we use two sub functions, Subpack
and Subsubpack to process the different value of
constraints of cloud i. The Subpack function find
Zi for cloud i while Subsubpack find the value in
log(Bi−Xi−Yi) times. When the cost or response
latency exceeds the constraint of the budget or

the maximum response latency with the capacity
of cloud i, the algorithm use Subpack function.
Otherwise, the algorithm invoke Subsubpack func-
tion. Generally, since there are three loops in this
algorithm, the time complex is O(|C|DL logB).
Although it seems a little complex for running this
algorithm, it is acceptable with its accuracy and
limited instance number. To optimize this algorithm,
we also set the unit of the latency to second and the
the unit of budget to 100 dollars. Therefore, the time
complex is O(|C|d D

100
edLe logB).

Algorithm 3 Dynamic programming for the snap-
shot layer

1: D′ ← D−
∑|C|

i=1(XiDri + YiDsi);
2: L′ ← L−

∑|C|
i=1 YiNsi;

3: for i from 1 to |C| do
4: SNAPSHOTPACK(Ddi, Si, Nsi Bi−Xi−Yi);
5: c, t← argmax f ;
6: f [c][0]← f [c][t];
7: end for
8: function SNAPSHOTPACK(d, s, n, b)
9: if db >= D and nb >= L′ then

10: SUBPACK(d, s, n);
11: return ;
12: end if
13: k = 1;
14: while k < b do
15: SUBSUBPACK(kc, ks, kn);
16: b = b− k;
17: k ← 2k;
18: end while
19: end function
20: function SUBPACK(d, s, n)
21: for d′ from d to D′ do
22: for n′ from n to L′ do
23: f [d′][n′] ← max(f [d′][n′], f [d′ −

Ddi][n
′ −Ndi] + Si);

24: end for
25: end for
26: end function
27: function SUBSUBPACK(d, s, n)
28: for d′ from c to D′ do
29: for n′ from n to L′ do
30: f [d′][n′] ← max(f [d′][n′], f [d′ −

d][n′ − n] + s);
31: end for
32: end for
33: end function

7

1000 2000 3000 4000 5000
Budget for service maintenance (dollars)

40k

80k

120k

160k

S
e
rv

ic
e
 c

a
p
a
ci

ty
 (

lin
ks

)

ISCD
Single Cloud
Multiple Random
Single Random

Fig. 4: Service capacity with different budget on
service maintenance

V. PERFORMANCE EVALUATION

We conduct simulation-based experiments to
evaluate the performance of the proposed algo-
rithms. To evaluate the performance in general
cases, we generate random networks and compare
the cost of different controller assignment algo-
rithms.

For the implementation and evaluation of the
instance placement, we used the script language
Python 2.7 and the numpry library, and test multiple
workloads. We use the price data from 24 cloud
platforms and test the status transition latency from
the snapshot to active status and the latency from the
active status to service status. Since it is hard to get
the real-world concurrency data, we set the wakeup
concurrency of each cloud platform is distributed
evenly in range [1000, 2000] and the startup con-
currency is distributed evenly in range [200, 700].
We also study some existing works based on cloud
[1] then set the service capacity of each instance
is distributed evenly in range [100, 200] links.
Meanwhile, the response latency in emergency is
set to 300 seconds which is enough for the people
evacuation.

For comparison, the following two schemes are
considered: (1) Single cloud with dynamic program-
ming.

(2) Random deployment with a multiple cloud
framework.

(3) Random deployment with a single cloud plat-
form.

50 100 150 200 250
Required response latency (seconds)

10k

20k

30k

40k

S
e
rv

ic
e
 c

a
p
a
ci

ty
 (

lin
ks

)

ISCD
Single Cloud
Multiple Random
Single Random

Fig. 5: Service capacity with different required
response latency

50 100 150 200 250
Required response latency (seconds)

2000

4000

6000

8000

10000

12000
B

u
d
g
e
t

fo
r

se
rv

ic
e
 m

a
in

te
n
a
n
ce

 (
d
o
lla

rs
)

ISCD
Single Cloud

Fig. 6: Minimum budget for the evacuation service
in the scenario of Padang

As shown in Fig. 4, we first study the maximum
service capacity in emergency with different budget
for service maintenance. The budget is set from
1000 dollars to 5000 dollars per month. With 1000
dollars, it seems limited budget is hard to maintain
a large enough cluster for the evacuation service in
emergency. With the increased budget, the service
capacity in emergency is increased rapidly. The
ISCD deployment performs best performance in
all solutions. Since the latency requirement is no
strict, the deployment on single cloud performs 80%
capacity of the performance in MCES with ISCD
deployment. The performance of two random de-
ployment strategies is much lower than the dynamic

8

algorithm and ISCD deployment especially with big
budget.

Then, we analyze the performance with strict
response latency in emergency. We test the service
capacity with the requirement of response latency
from 50 seconds to 250 seconds and the budget of
2000 dollars. With limited response latency, it needs
higher concurrency on instance startup. As a result,
the ISCD deployment in MCES performs much
better than the single cloud platform. With better
concurrency, the random deployment in MCES even
performs better then dynamic programming with
single cloud platform. With limited concurrency, the
dynamic programing performs just a little better
than the random deployment in the single cloud
platform.

With the initial evaluation of our solution, with
the same budget for service maintenance, we find
that our platform can provide better service capacity
than single cloud platform in emergency. It because
MCES can maintain less active instances in the
normal times and use more snapshot and sleep in-
stances with lower cost. When the disaster happens,
with higher concurrency provided by multiple cloud
platforms, MCES can startup much more instances
than single cloud platform in the given response
latency.

We also take a real world scenario based simula-
tion to evaluate whether the MCES provide capacity
for the evacuation in real disaster. We choose the
data from the Indonesian city of Padang which
faces high risk of being inundated by a tsunami
ware. The city has more than 1,000,000 people
in which 300,000 people living in the dangerous
area. From some existing work, these people need
more than 20 minutes for evacuation to the safe
area and the warning time before the tsunami wave
reaches the cost line is only 20-40 minutes [17].
It is more strict than the simulation setting with
the limited tsunami warning time. We use the same
setting as the input to the simulation. Considering
the random deployment performs not enough in the
past simulation, we only test the ISCD in MCES
and the dynamic programming based placement in
single cloud.

As shown in Fig.6, we analyze the budget with
different response latency requirement for the evac-
uation service of the Padang scenario. From the
result, we find if the MCES costs less than 7000
dollars per month, the evacuation service response

time is less than 1 minutes which is much less
than the evacuation time while single cloud based
evacuation service costs near to 11000 dollars. If
the time request becomes less strict, the budget
needed by two systems are reduced rapidly. When
the response latency request is more than 4 minutes,
the budget taken by the MCES is less than 3000
dollars while the single cloud based service costs
less than 7000 dollars. As a result, with the multi-
cloud based deployment support, MCES costs much
less than single cloud based service even in a real
word scenario.

VI. CONCLUSION AND FUTURE WORK

In this paper, we propose a multiple cloud based
architecture that uses multiple cloud platforms to
provide higher evacuation service capacity than
single cloud platform in emergency. We design a
framework named MCES to support the multiple
cloud based evacuation services based on existing
cloud platforms. In this framework, we can deploy
instances in different statuses for lower cost. Based
on this framework, we study a instance deployment
problem to maximum the service capacity in emer-
gency while satisfying the cost and response latency
requirements of a given set of cloud platform.
Finally, extensive simulations are conducted to show
that the proposed algorithm can significantly maxi-
mum the service capacity in emergency.

In the future, we plan to implement a complete
MCES framwork as a module in the opensouce
cloud management OpenStack [18]. Meanwhile, it
is signification to find appropriate deployment al-
gorithm to suit the dynamic requirement. A deeper
experiment with the real word testbed is also needed
to evaluate the efficiency of the MCES framework.

ACKNOWLEDGMENT

This work is partially supported by JSPS
KAKENHI Grant Number 25880002, 26730056,
JSPS A3 Foresight Program, NSFC Grant No.
61450110085, No. 61272444, No. 61411146001,
No. U1401253, No. U1405251, the Open Research
Project of the State Key Laboratory of Industrial
Control Technology, Zhejiang University, China
(No. ICT1407).

9

REFERENCES

[1] L. Chu and S.-J. Wu, “An integrated building fire evacuation
system with rfid and cloud computing,” in 2011 Seventh In-
ternational Conference on Intelligent Information Hiding and
Multimedia Signal Processing (IIH-MSP), Oct 2011, pp. 17–20.

[2] Y.-J. Chen, C.-Y. Lin, and L.-C. Wang, “Sensors-assisted res-
cue service architecture in mobile cloud computing,” in 2013
IEEE Wireless Communications and Networking Conference
(WCNC), April 2013, pp. 4457–4462.

[3] J. Ahn and R. Han, “Rescueme: An indoor mobile augmented-
reality evacuation system by personalized pedometry,” in 2011
IEEE Asia-Pacific Services Computing Conference (APSCC),
Dec 2011, pp. 70–77.

[4] W. Ling, J. Wang, and X. Wei, “Cloud service-oriented model-
ing and simulation of regional crowd evacuation in emergency,”
in Web-Age Information Management, ser. Lecture Notes in
Computer Science, Y. Chen, W.-T. Balke, J. Xu, W. Xu, P. Jin,
X. Lin, T. Tang, and E. Hwang, Eds. Springer International
Publishing, 2014, pp. 130–140.

[5] S. Chaisiri, B.-S. Lee, and D. Niyato, “Optimal virtual machine
placement across multiple cloud providers,” in Services Com-
puting Conference, 2009. APSCC 2009. IEEE Asia-Pacific, Dec
2009, pp. 103–110.

[6] R. Van den Bossche, K. Vanmechelen, and J. Broeckhove,
“Cost-optimal scheduling in hybrid iaas clouds for deadline
constrained workloads,” in Cloud Computing (CLOUD), 2010
IEEE 3rd International Conference on, July 2010, pp. 228–235.

[7] D. Breitgand, A. Marashini, and J. Tordsson, “Policy-driven ser-
vice placement optimization in federated clouds,” IBM Research
Division, Tech. Rep, 2011.

[8] T. C. Ferreto, M. A. S. Netto, R. N. Calheiros, and C. A.
F. De Rose, “Server consolidation with migration control for
virtualized data centers,” Future Gener. Comput. Syst., vol. 27,
no. 8, pp. 1027–1034, Oct. 2011.

[9] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. De Rose, and
R. Buyya, “Cloudsim: a toolkit for modeling and simulation
of cloud computing environments and evaluation of resource
provisioning algorithms,” Software: Practice and Experience,
vol. 41, no. 1, pp. 23–50, 2011.

[10] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A.
Konwinski, G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M.
Zaharia, “A view of cloud computing,” Commun. ACM, vol. 53,
no. 4, pp. 50–58, Apr. 2010.

[11] M. Dong, H. Lit, K. Ota, and H. Zhu, “Hvsto: Efficient privacy
preserving hybrid storage in cloud data center,” in IEEE Con-
ference onComputer Communications Workshops (INFOCOM
2014 WKSHPS), April 2014, pp. 529–534.

[12] Z. Alazawi, S. Altowaijri, R. Mehmood, and M. Abdljabar, “In-
telligent disaster management system based on cloud-enabled
vehicular networks,” in 11th International Conference on ITS
Telecommunications (ITST), Aug 2011, pp. 361–368.

[13] X. Pu, L. Liu, Y. Mei, S. Sivathanu, Y. Koh, and C. Pu, “Under-
standing performance interference of i/o workload in virtualized
cloud environments,” in IEEE 3rd International Conference on
Cloud Computing (CLOUD 2010), July 2010, pp. 51–58.

[14] I. Houidi, M. Mechtri, W. Louati, and D. Zeghlache, “Cloud
service delivery across multiple cloud platforms,” in IEEE
International Conference on Services Computing (SCC 2011),
July 2011, pp. 741–742.

[15] M. Dou, J. Chen, D. Chen, X. Chen, Z. Deng, X. Zhang, K.
Xu, and J. Wang, “Modeling and simulation for natural disaster
contingency planning driven by high-resolution remote sensing
images,” Future Generation Computer Systems, vol. 37, no. 0,
pp. 367 – 377, 2014.

[16] A. Drexl, “A simulated annealing approach to the multicon-
straint zero-one knapsack problem,” Computing, vol. 40, no. 1,
pp. 1–8, 1988.

[17] G. Lämmel, M. Rieser, K. Nagel, H. Taubenböck, G. Strunz,
N. Goseberg, T. Schlurmann, H. Klüpfel, N. Setiadi, and J.
Birkmann, “Emergency preparedness in the case of a tsunami–
evacuation analysis and traffic optimization for the indonesian
city of padang,” in Pedestrian and Evacuation Dynamics 2008,
W. W. F. Klingsch, C. Rogsch, A. Schadschneider, and M.
Schreckenberg, Eds. Springer Berlin Heidelberg, 2010, pp.
171–182.

[18] K. Pepple, Deploying OpenStack. ” O’Reilly Media, Inc.”,
2011.

Mianxiong Dong received B.S., M.S. and
Ph.D. in Computer Science and Engineering
from The University of Aizu, Japan. He is
currently an Assistant Professor with Depart-
ment of Information and Electronic Engineer-
ing, Muroran Institute of Technology, Japan.
Before join Muroran-IT, he was a Researcher
with National Institute of Information and
Communications Technology (NICT), Japan.

He was a visiting scholar with BBCR group at University of Waterloo,
Canada supported by JSPS Excellent Young Researcher Overseas
Visit Program from April 2010 to August 2011. Dr. Dong is currently
a research scientist with A3 Foresight Program (2011-2016) funded
by Japan Society for the Promotion of Sciences (JSPS), NSFC of
China, and NRF of Korea. His research interests include wireless
sensor networks, vehicular ad-hoc networks and wireless security.

He Li received the BS and MS degrees from
Huazhong University of Science and Technol-
ogy in 2007 and 2009, respectively. Currently,
he is a PhD student in School of Computer Sci-
ence and Engineering, Huazhong University of
Science and Technology, China. His research
interests include cloud computing and software
defined networking. He is a student member
of the IEEE and the IEEE Communication

Society.

Kaoru Ota received M.S. degree in Computer
Science from Oklahoma State University, USA
in 2008 and Ph.D. degree in Computer Science
and Engineering from The University of Aizu,
Japan in 2012. She is currently an Assistant
Professor with Department of Information and
Electronic Engineering, Muroran Institute of
Technology, Japan. She serves as a Guest Edi-
tor of IEEE Wireless Communications, IEICE

Transactions on Information and Systems, Editor of Peer-to-Peer
Networking and Applications (Springer), International Journal of
Embedded Systems (Inderscience) and Journal of Cyber-Physical
Systems. Her research interests include wireless sensor networks,
vehicular ad hoc networks, and ubiquitous computing.

10

Laurence T. Yang received the BE degree
in Computer Science and Technology from
Tsinghua University, China and the PhD de-
gree in Computer Science from University of
Victoria, Canada. He is a professor in the
Department of Computer Science, St. Francis
Xavier University, Canada. His research inter-
ests include parallel and distributed computing,
embedded and ubiquitous/pervasive comput-

ing, big data. He has published more than 200 papers in various
refereed journals (around 40% on IEEE/ACM Transactions and
Journals, others mostly on Elsevier, Springer and Wiley Journals).
His research has been supported by the National Sciences and Engi-
neering Research Council, and the Canada Foundation for Innovation.

Haojin Zhu received his B.Sc. degree (2002)
from Wuhan University (China), his M.Sc.
(2005) degree from Shanghai Jiao Tong Uni-
versity (China), both in computer science and
the Ph.D. in Electrical and Computer En-
gineering from the University of Waterloo
(Canada), in 2009. He is currently an Associate
Professor with Shanghai Key Laboratory of
Scalable Computing and Systems, Department

of Computer Science and Engineering, Shanghai Jiao Tong Univer-
sity, China. His research interests include wireless network security
and distributed system security.

