{"created":"2023-06-19T10:29:23.642277+00:00","id":9226,"links":{},"metadata":{"_buckets":{"deposit":"7e5a7b00-d443-46ee-81cd-3d64086bf238"},"_deposit":{"created_by":18,"id":"9226","owners":[18],"pid":{"revision_id":0,"type":"depid","value":"9226"},"status":"published"},"_oai":{"id":"oai:muroran-it.repo.nii.ac.jp:00009226","sets":["41:227"]},"author_link":["54270"],"item_81_date_granted_17":{"attribute_name":"学位授与年月日","attribute_value_mlt":[{"subitem_dategranted":"2017-03-23"}]},"item_81_degree_grantor_10":{"attribute_name":"学位授与機関","attribute_value_mlt":[{"subitem_degreegrantor":[{"subitem_degreegrantor_language":"ja","subitem_degreegrantor_name":"室蘭工業大学"},{"subitem_degreegrantor_language":"en","subitem_degreegrantor_name":"Muroran Institute of Technology"}],"subitem_degreegrantor_identifier":[{"subitem_degreegrantor_identifier_name":"10103","subitem_degreegrantor_identifier_scheme":"kakenhi"}]}]},"item_81_degree_name_11":{"attribute_name":"学位名","attribute_value_mlt":[{"subitem_degreename":"博士(工学)","subitem_degreename_language":"ja"}]},"item_81_description_25":{"attribute_name":"フォーマット","attribute_value_mlt":[{"subitem_description":"application/pdf","subitem_description_type":"Other"}]},"item_81_description_7":{"attribute_name":"抄録","attribute_value_mlt":[{"subitem_description":"流動層ボイラのエアノズル等では高温エロージョン摩耗により損傷が進行するため耐高温エロージョン摩耗性に優れた耐熱耐摩耗合金の開発が期待されている.\n本研究では,高温エロージョン摩耗の加速試験として,球形のアルミナ粒子(平均粒径約1mm)を30m/sec.という高速で試験片に衝突させる高温(1173K)エロージョン摩耗試験を高クロム鋳鉄,ステンレス鋼,Co基合金に対して行い,試験後の試験片表面,表層の光学顕微鏡,SEM及びTEMならびに硬さ分布を観察した.\n1章では,高温におけるエロージョン摩耗のこれまでの研究と課題,本研究の目的と構成を述べた.\n2章では,高クロム鋳鉄のCを1.4~3.0%,Crを12~27%に変化させCr/C比率とM7C3炭化物組成の関係について述べた.Cr/C比率が増加するとM7C3炭化物中のCr/Feの増加が認められた.この関係はCr/Cが4~18という広い範囲でみられた.\n3章では,重量測定法に代わる摩耗量の測定方法として,非接触で高精度測定が可能な3Dレーザー顕微鏡による最大摩耗深さの定量化方法ついて述べた.\n4章では,アルミナ粒子の投射と再加熱のサイクル毎に摩耗の進行ついて述べた.酸化しやすい3C-12Cr鋳鉄では,摩耗部と摩耗していない定常酸化部のスケールを観察した結果,摩耗部ではスケールのはく離-再酸化を繰り返すため定常酸化部よりも1.6倍多くスケールが生成しており,摩耗におよぼすスケールの寄与は大きいことを明らかにした.酸化を抑制するためには固溶Cr量が12%以上必要であることを見出した.\nまた,酸化が少なく,共晶組織で脆性材料である3C-27Cr鋳鉄の摩耗挙動は高延性材料であるSUS310Sに類似した摩耗曲線を示していた. \n5章では,高温エロージョン摩耗に及ぼす材料因子の影響について述べた.高クロム鋳鉄の衝突角度依存性について実験した.摩耗量が高角度側で最大を示す破壊摩耗とはならず低角度側で摩耗量が大きいせん断変形摩耗形態を示すことを認めた.\n摩耗量の多い30deg.で比較すると高温硬さが上昇するほどせん断ひずみ量及び加工変形層深さは減少し,その結果,高温エロージョン摩耗は少なくなっていた.また,高クロム鋳鉄について比較すると,共晶炭化物の多いほうが高温エロージョン摩耗は少なくなっていた.\n高クロム鋳鉄の表層は大きなせん断変形により共晶炭化物が破砕・粒状化するとともに組織が微細化していた.\n6章では,摩耗部の表層組織を詳細に観察した.高クロム鋳鉄とSUS310Sの表層ではせん断歪によって二次炭化物(高クロム鋳鉄)及びσ相(SUS310S)が析出して,これらの微細析出粒子が再結晶オーステナイト粒をピン止めすることにより微細結晶粒が生成することを見出した.\n高クロム鋳鉄のエロージョン摩耗では,SUS310Sと同様にリップルマーク,舌状突起が形成され,その摩耗曲線も同じ挙動を示した.これは,高クロム鋳鉄の表層では共晶炭化物の破砕・粒状化するとともに微細粒オーステナイト組織が生成するために延性が著しく向上しためであるといえる.\n7章では,流動層バイオマスボイラのエアノズルに高クロム鋳鉄を適用した実機試験で摩耗量を耐熱鋳鋼の半分に抑えたことについて述べた.\nThe development of heat and wear resistant alloy to prevent erosive wear at high temperature is required since the progress of erosive wear at air nozzle of fluidized bed boiler. High temperature erosion test at 1173K.was carried out using 1mm diameter of spherical alumina particles with collision velocity of 30m/sec. Specimens were high-chromium cast iron, stainless steel and Co based alloy. After erosion test, surface of specimens were observed by OM, SEM and TEM and measured hardness distribution.\nIn Chapter 1, results and task of the previous study on erosive wear and the aim and architecture of this study are described.\nIn Chapter 2, relationship between Cr/C ratio of high chromium cast iron and M7C3 carbide composition was analyzed by changing C content from 1.4 to 3.0%, and Cr content from 12 to 27%. M in M7C3 of Cr/Fe ratio was increased as Cr/C ratio increases. This relationship was observed with wide range of 4 to 18 of Cr/C ratio.\nIn Chapter 3, establishment of maximum erosion depth measurement method by 3D laser microscope which allows non-contact and high precision measurement was described. This wear loss measuring method is substitution with conventional weight loss measurement.\nIn Chapter 4, progress of erosive wear by every cycle of blasting alumina particle and re-heating was described. With 3C-12Cr cast iron, scale of erosive surface and non-erosive normal oxidation surface were compared and it was found 1.6 times thicker scale was formed at erosive surface than normal oxidation one as it repeats of the sequence of scale peel off and re-oxidization. It was found that more than 12% Cr content of solid solution is required to prevent oxidation in air at 1173K. In erosion behavior, eutectic structure and brittle 3C-27Cr cast iron which is less oxidation, shows similar erosive curve with high ductility SUS310S.\nIn Chapter 5, the effect of material properties on high temperature erosive wear was described. Erosive wear dependence of high chromium cast iron on impact angle was experimented. It was found that shear deformation wear mode which wear much more erosive depth at low angle than at the high angle side where erosive wear shows maximum with brittle fracture wear mode. Compared in various materials with angle of 30deg. as high temperature hardness goes up, shear deformation angle and depth of plastic deformation zone decrease and as a result high-temperature erosive wear decreased. Compared in high chromium cast iron, high temperature erosive wear decrease when eutectic carbide increases. High chromium cast iron, in the surface eutectic carbide became fragmented and finely spheroidized carbide because of large shear deformation.\nIn Chapter 6, in the surface of erosive area, fine austenite grains that are of size under 1micrometer were found. In the surface structure, precipitates of secondary carbide particles [high chromium cast iron] and σ phase particles [SUS310S] were observed and those precipitates pinned recrystallized austenite grain growth. Erosion wear of high chromium cast iron, ripple mark and protrusion were formed as same as SUS310S, and both materials show same erosive curve. This is because remarkable increase of ductility at surface of high chromium cast iron as eutectic carbide become fragmented eutectic carbide and finely spheroidized carbide and austenite matrix became recrystallized fine grain.\nIn Chapter 7, it was described that erosive wear of high chromium cast iron became half of that heat-resistant cast steel by applying of high chromium cast iron to air nozzle of fluidized bed biomass boiler.","subitem_description_language":"ja","subitem_description_type":"Abstract"}]},"item_81_dissertation_number_13":{"attribute_name":"学位授与番号","attribute_value_mlt":[{"subitem_dissertationnumber":"甲第396号"}]},"item_81_identifier_registration":{"attribute_name":"ID登録","attribute_value_mlt":[{"subitem_identifier_reg_text":"10.15118/00009192","subitem_identifier_reg_type":"JaLC"}]},"item_81_subject_9":{"attribute_name":"日本十進分類法","attribute_value_mlt":[{"subitem_subject":"501","subitem_subject_scheme":"NDC"}]},"item_81_text_12":{"attribute_name":"学位の種別","attribute_value_mlt":[{"subitem_text_language":"ja","subitem_text_value":"課程博士"}]},"item_81_text_14":{"attribute_name":"報告番号","attribute_value_mlt":[{"subitem_text_language":"ja","subitem_text_value":"甲第396号"}]},"item_81_text_15":{"attribute_name":"学位記番号","attribute_value_mlt":[{"subitem_text_language":"ja","subitem_text_value":"博甲第396号"}]},"item_81_text_16":{"attribute_name":"研究科・専攻","attribute_value_mlt":[{"subitem_text_language":"ja","subitem_text_value":"工学専攻"}]},"item_81_version_type_24":{"attribute_name":"著者版フラグ","attribute_value_mlt":[{"subitem_version_resource":"http://purl.org/coar/version/c_970fb48d4fbd8a85","subitem_version_type":"VoR"}]},"item_access_right":{"attribute_name":"アクセス権","attribute_value_mlt":[{"subitem_access_right":"open access","subitem_access_right_uri":"http://purl.org/coar/access_right/c_abf2"}]},"item_creator":{"attribute_name":"著者","attribute_type":"creator","attribute_value_mlt":[{"creatorAffiliations":[{"affiliationNameIdentifiers":[],"affiliationNames":[{"affiliationName":""}]}],"creatorNames":[{"creatorName":"小奈, 浩太郎","creatorNameLang":"ja"},{"creatorName":"ONA, Kotaro","creatorNameLang":"en"},{"creatorName":"オナ, コウタロウ","creatorNameLang":"ja-Kana"}],"familyNames":[{},{},{}],"givenNames":[{},{},{}],"nameIdentifiers":[{}]}]},"item_files":{"attribute_name":"ファイル情報","attribute_type":"file","attribute_value_mlt":[{"accessrole":"open_date","date":[{"dateType":"Available","dateValue":"2017-05-19"}],"displaytype":"detail","filename":"A396.pdf","filesize":[{"value":"11.2 MB"}],"format":"application/pdf","licensetype":"license_note","mimetype":"application/pdf","url":{"label":"A396","objectType":"fulltext","url":"https://muroran-it.repo.nii.ac.jp/record/9226/files/A396.pdf"},"version_id":"930f920e-0f7b-43c4-9fe7-f2994d03aafd"},{"accessrole":"open_date","date":[{"dateType":"Available","dateValue":"2017-05-19"}],"displaytype":"detail","filename":"A396_summary.pdf","filesize":[{"value":"256.6 kB"}],"format":"application/pdf","licensetype":"license_note","mimetype":"application/pdf","url":{"label":"A396_summary","objectType":"abstract","url":"https://muroran-it.repo.nii.ac.jp/record/9226/files/A396_summary.pdf"},"version_id":"2da524b7-2032-4874-a85f-ec93b0160de7"}]},"item_language":{"attribute_name":"言語","attribute_value_mlt":[{"subitem_language":"jpn"}]},"item_resource_type":{"attribute_name":"資源タイプ","attribute_value_mlt":[{"resourcetype":"doctoral thesis","resourceuri":"http://purl.org/coar/resource_type/c_db06"}]},"item_title":"高クロム鋳鉄の高温エロージョン磨耗特性","item_titles":{"attribute_name":"タイトル","attribute_value_mlt":[{"subitem_title":"高クロム鋳鉄の高温エロージョン磨耗特性","subitem_title_language":"ja"}]},"item_type_id":"81","owner":"18","path":["227"],"pubdate":{"attribute_name":"PubDate","attribute_value":"2017-05-19"},"publish_date":"2017-05-19","publish_status":"0","recid":"9226","relation_version_is_last":true,"title":["高クロム鋳鉄の高温エロージョン磨耗特性"],"weko_creator_id":"18","weko_shared_id":-1},"updated":"2024-01-22T02:34:28.045567+00:00"}