@phdthesis{oai:muroran-it.repo.nii.ac.jp:00009690, author = {YI, Deri and 依, 徳日}, month = {2018-06-06, 2018-06-06}, note = {application/pdf, X-ray Free Electron Laser (X-FEL), which is one of the next generation light source, provides us a high-intensity and coherent X-ray. The X-FEL is expected to be applied to many advanced technologies such as analyzing protein structure, biological nano-machines. However, the X-FEL is now available only in a few big laboratories such as SPring-8 in Japan, LCLS in USA, EuroFEL and SwissFEL in Europe, since the X-FEL machine is a very large and expensive system. Accordingly, it is necessary to develop a compact size X- FEL for applying this technology more widely. For downsizing the X-FEL, it is necessary to achieve a short period and high-intensity magnetic field unculator. For this propose, it is considered to use the bulk high-Tc superconductivity magnets (bulk HTS magnets). For example, a staggered array undulator (SAU) and pure-type HTS undulator are proposed by the Kyoto University and RIKEN, respectively. It is known that very uniformvertical sinusoidal magnetic field has to be created at the undulator for normal operation of the FEL. However, it is impossible to adjust the size or position of the bulk HTS magnets after they change to a superconducting state inside a cryostat. Therefore, a numerical simulation of the magnetization process plays a very important role for determining a suitable size and alignment of the bulk HTS magnets in the design stage of an X-FEL. In this thesis, we have been working on development of a numerical code for the magnetization process of the HTS undulator based on the current vector potential method (T-method) combining with the critical state and the power-law macro-models for the shielding current in the bulk HTS magnets. It is confirmed that a sufficiently good agreement between the simulation results and its measurement data of magnetic field distribution for three magnets Pure-type HTS undulator is obtained. Then, themuch larger scale simulation than three magnets is required for the practical use of the developed code to the real X-FEL, because the X-FEL machine is a very large system which consists of more than two hundred bulk HTS magnets. We also discussed appropriate calculation method of the interaction between the bulk HTS magnets and optimal parameters of HTS macro model for speeding up the calculation, and confirmed that the calculation time can be sufficiently reduced by using these modifications. In addition, the developed code is applied for a large-scale simulation of the magnetization process of HTS undulator and the magnetization process of SAU., 近年、X 線領域でコヒーレント光を発生させる X 線自由電子レーザ(X-FEL) の研究開発が活発に進められており、創薬のスピードアップと効率化、新しい素材の研究開発での利用等次世代の光源として期待されている。しかしながら、X-FEL の装置の全長は一般的に数百メートルにもなり、開発コストも非常に高価のため、2017 年の時点で,日本の SACLA 、アメリカの LCLS、欧州の EuroFEL 及び SwissFEL のみでしか実用化されていない。このため、X-FEL のより広い普及を目指す場合には、装置の小型化が重要な課題の一つになる。とりわけ、X-FEL 装置の大部分を占めるのが、アンジュレータと呼ばれる電子軌道上に沿って垂直交番磁場を形成し電子を蛇行運動させるセクションであり、その小型化にはアンジュレータ磁石を強磁場化かつ短周期化する必要がある。この問題を解決するため、永久磁石よりも強力な磁場を持ち、液体窒素で超伝導現象を起こす高温超伝導体(HTS)磁石を用いることが提案され、具体的なものとして、京都大学及び理化学研究所において、スタガードアレイアンジュレータ(SAU)及び pure-type HTS undulator という方式がそれぞれ検討されている。このとき、HTS 磁石の着磁では、全ての HTS 磁石がまとめてクライオスタット中に置かれこれに一様磁場を印加することにより行われるため、着磁後に磁石の位置やサイズなどの微調整すること不可能である。したがって、あらかじめ数値シミュレーションを用いて着磁後の磁場分布を見積もりながら着磁の時点で必要な精度の交番磁場分布となるような HTS 磁石の配置や形状を設計しておく必要がある。本博士論文では、積層薄板状近似の電流ベクトルポテンシャル法(T 法)とHTS に対する臨界状態モデル及びベキ乗則マクロモデルを組み合わせて、高温超伝導体の着磁プロセスをシミュレーションできるプログラムコードの開発を行った。そして、実測データのある pure-type HTS undulator における着磁プロセスでの磁場分布をシミュレーションで再現できることを確認した。また、コードの実用性を高めるため、HTS 磁石間の相互作用の計算方法、マクロモデルの最適なパラメータなどを検討し、計算時間の大幅な短縮を図った。さらに、本解析コードの応用として、実際の装置と同程度の 200 以上の HTS からなるアンジュレータモデルの大規模計算やもう1つのHTS アンジュレータ方式SAU の着磁解析にも適用を試みた。}, school = {室蘭工業大学, Muroran Institute of Technology}, title = {Numerical Analysis of Magnetization Process of High-Tc Superconductor Undulator for Free Electron Laser}, year = {} }