@phdthesis{oai:muroran-it.repo.nii.ac.jp:00009961, author = {NGUYEN, Xuan Quy and グエン, スワン クイ}, month = {2019-06-25, 2019-06-25}, note = {application/pdf, Service lifetime refers to the period during which a structure fulfills its performance requirements. Structures in areas that experience cold temperatures are exposed to freeze-thaw cycles which can cause frost damage, carbonation and reduce service lifetime. The modelling of service lifetime deterioration is the main aim of this research, (Chapter 1). For this purpose (Chater 2), the experimental program was designed in the following two series. In Series 1, mortar specimens subjected to drying conditions in the laboratory as one test set, and exposed to different natural climate conditions at three outdoor locations in 10 years as another test set. Next, in Series 2 a large tests was performed in the laboratory by adding not only different temperature but also different relative humidities and curing times. Mortar specimens were prepared using water, ordinary Portland cement, and sand. Pore structure of mortar specimens was evaluated using Mercury Intrusion Porosimetry method. The results indicated that most of the pore structure change in the outdoor exposure test and the laboratory test showed the same tendency due to drying temperature. Test results confirmed that pore structure of mortar was coarsened and the pore volume with a diameter range of 40-2000 nm and 150-15000 nm were increased (Chapter 3, 4). Furthermore, this study reports evidence for the relationship between pore structure change and maturity, and an improved maturity function is proposed. The change in the pore structure is determined by the proposed maturity function, which considers the curing temperature history and the relative humidity. The relative humidity is an additional and novel factor forming the new maturity function for the prediction of pore structure change. Finally, the experimental results presented are useful information for understanding the pore structure of mortar changes due to environmental conditions. In this study, by analyzing the influence of environmental conditions on the change of pore structure, quantifying the relationship of frost damage from pore structure change, conducting laboratory experiment and exposure to real environment, the method for forecasting frost damage deterioration calculated by ASTM equivalent cycle number including winter environment and dry condition in summer is proposed. The service life of mortar is calculated for each region as forecasting method of frost damage by taking into consideration the effect of summer pore structure change on frost damage resistance in addition to prediction of frost damage by conventional cycle number corresponding to ASTM using the proposal of indicator FD-CI (Chapter 5)., 建築物の寿命とは、構造物がその性能要件を満たす期間を指す。日本の北海道のような寒冷地における構造物は、凍害の原因となる凍結解凍サイクルや中性化に曝され、耐用年数の短縮を引き起こす可能性がある。本研究の目的は、建築物の寿命の低下のモデル化である(第1章)。この目的のために(第2章)、2つのシリーズで実験を計画した。シリーズ1では、モルタル試験体を実験室で乾燥条件下で養生し、もう一つの試験として室蘭、東京、沖縄の3つの異なる都市で屋外の自然気候条件に10年間曝露した。次に、シリーズ2では、異なる温度だけでなく、異なる相対湿度および硬化時間を新たな実験要因として追加することによって、実験室で試験が行った。モルタル試験体は、水、普通ポルトランドセメントおよび砂を用いて調製した。モルタル試験体の細孔構造は水銀圧入法を用いて評価した。その結果、屋外暴露試験では細孔構造の大部分が変化することが確認され、実験室試験では乾燥温度によって同じ傾向が見られた。このことから乾燥によりモルタルの細孔構造が粗くなっており、直径40~2000nmの細孔容積および直径150~15000nmの細孔容積が増加していることを確認した(第3章、第4章)。さらに、この研究は、細孔構造の変化と温湿度時間積の関係についての証拠を報告し、温湿度時間積の算定式を提案した。細孔構造の変化は、硬化温度および相対湿度を考慮して提案された温湿度時間積によって決定される。細孔構造の変化の予測のために相対湿度を考慮し温湿度時間積に組み込んだ事が付加的かつ新規な因子である。最後に、実験結果は環境条件によるモルタルの変化の細孔構造を理解するのに有益な情報である。本研究では、細孔構造の変化に及ぼす環境条件の影響を分析と、細孔構造変化による凍害の関係の定量化、実験室実験と実環境での暴露試験から、ASTM相当サイクル数に冬の環境や夏の乾燥状態を含めて計算する凍害の予測方法を提案した。本研究で提案した夏期における耐凍害性に関係する細孔構造変化の影響をASTM相当サイクル数に加えた凍害予測手法であるFD-CIを用いてそれぞれの地域のモルタルの耐用年数を算出した(第5章)。}, school = {室蘭工業大学, Muroran Institute of Technology}, title = {The Relationship between Pore Structure Change and Deterioration Process of Cement-based Mortar due to the Different Environmental Conditions}, year = {} }