@phdthesis{oai:muroran-it.repo.nii.ac.jp:00009962, author = {OWOLABI, Isiaka Alade and オウォラビ, イシアカ アラデ}, month = {2019-06-25, 2020-04-02}, note = {application/pdf, Many biologically active compounds, including pharmaceuticals, are optically active and often only one of the enantiomer shows a high biologically activity. Therefore, it is important to develop the synthetic methodology for providing only necessary enantiomer. As the methodology, catalytic asymmetric synthesis, in which the use of a low amount of a chiral catalyst theoretically enables infinite production of optically active compounds, is the most efficient in the synthetic organic chemistry field. Moreover, this methodology is also important in terms of energy saving and environmental friendliness. The chiral catalysts used in catalytic asymmetric syntheses can be divided into two categories of organometallic catalyst and metal-free organocatalyst. Particularly, organocatalyst is stable in air, easy to handle, and inexpensive, so they are being focused on as next-generation, environmentally friendly catalysts. Author developed the new type amino amide organocatalyst. This catalyst is expected to work as multipoint recognition catalyst having both covalent and non-covalent hydrogen bonding sites in the single molecule. This catalyst was successfully derived from commercially available amino acids, and the excellent catalytic activities were demonstrated in both (1) the aldol reaction and (2) the Michael addition. (1)The enantioselective asymmetric aldol reaction of ketones with aldehydes using amino amide organocatalysts was carried out to provide chiral aldol products in excellent chemical yields, diastereoselectivities and enantioselectivities. The obtained aldol products are important synthetic precursors of the synthesis of many biologically active compounds including pharmaceuticals. (2)The enantioselective asymmetric Michael reaction of ?-keto esters with nitro olefins using amino amide organocatalysts was carried out to provide chiral Michael adducts in excellent chemical yields, diastereoselectivities and enantioselectivities. The obtained Michael adducts with chiral quaternary carbon center are important synthetic precursors of the synthesis of many biologically active compounds including pharmaceuticals such as platencin (antibiotic). In this study, author revealed that the new explored amino amide organocatalyst showed satisfactory catalytic activities in both (1) the aldol reaction and (2) the Michael addition. It is expected that this results should be able to greatly contribute the development of new drug and its related compounds., 薬品を含む多くの生物活性化合物は光学活性物質であり, その鏡像異性体は異なる生体内活性を示すことが多いため, 有効な一方の鏡像異性体を高選択的に合成するための不斉合成反応,特に不斉触媒を用いる触媒的不斉合成反応の開発が重要である.その不斉触媒の中で,金属を含有しない有機分子触媒は空気中で安定であり取り扱いやすく安価であるという利点などを有するため, 次世代の環境調和型触媒として現在活発に研究開発が行なわれている.著者は, 新規多点認識型有機分子触媒としてアミノアミド型触媒を設計し, それを, エナンチオ選択的 (1) ケトン類とアルデヒド類との不斉アルドール反応,(2) s-ケトエステル類とニトロスチレン類 との不斉マイケル付加反応にそれぞれ適用し,その有機分子触媒としての機能性を明らかにした.(1) 新規有機分子触媒としてアミノアミド有機分子触媒Aを合成し, 触媒Aを用いるケトン類とアルデヒド類との不斉アルドール反応を検討した.その結果, 触媒Aが本反応において不斉触媒活性を示し,優れた化学収率と良好な光学収率で光学活性アルドール生成物を与えることを見出した. 得られた反応生成物は,創薬のための様々な生物活性化合物の合成中間体として有用であり,この合成中間体から新薬候補化合物を創製できることが期待される.(2) アミノアミド有機分子触媒Aを用いるs-ケトエステル類 とニトロスチレン類との不斉マイケル反応を検討した.その結果,触媒Aが不斉触媒活性を示し, 本反応によってほぼ完全な化学収率と優れた光学収率で光学活性マイケル付加体が得られることを見出した.得られたマイケル付加体は,創薬のための様々な生物活性化合物の合成中間体として有用であり,この合成中間体から新薬候補化合物を創製できることが期待される.本研究において著者は,「基質との共有結合部位と水素結合部位,さらには反応のエナンチオ選択性の制御に有効な多環式芳香族環部位を併せ持つ多点認識型アミノアミドハイブリッド型触媒」を開発することに成功し, それらが創薬に有効な不斉アルドール反応および不斉マイケル付加反応においてそれぞれ良好な不斉触媒活性を示すことを明らかにした. また,本反応によって得られる化合物は様々な医薬品をはじめとする生物活性化合物の合成中間体として有用であることから,本研究の成果は, 新薬創製の合成開発研究に大きく貢献できると期待される.}, school = {室蘭工業大学, Muroran Institute of Technology}, title = {The Development of New Amino Amide Organocatalysts for Enantioselective Asymmetric Reactions}, year = {} }