ログイン
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 研究者名(五十音順)
  2. 太田 香(OTA Kaoru)
  1. 学術雑誌論文

Deep Learning for Mobile Multimedia: A Survey

http://hdl.handle.net/10258/00009482
http://hdl.handle.net/10258/00009482
37410c94-75ec-4577-951a-22321bf291a4
名前 / ファイル ライセンス アクション
ACM_2017_13(3)_34.pdf ACM_2017_13(3)_34 (1.1 MB)
Item type 学術雑誌論文 / Journal Article.(1)
公開日 2017-10-17
書誌情報 ja : ACM Transactions on Multimedia Computing, Communications, and Applications

巻 13, 号 3, p. 34-54, 発行日 2017-08-10
タイトル
タイトル Deep Learning for Mobile Multimedia: A Survey
言語 en
言語
言語 eng
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_6501
資源タイプ journal article
アクセス権
アクセス権 open access
アクセス権URI http://purl.org/coar/access_right/c_abf2
著者 太田, 香

× 太田, 香

en OTA, Kaoru

ja 太田, 香

ja-Kana オオタ, カオル


Search repository
MINH SON, Dao

× MINH SON, Dao

en MINH SON, Dao

Search repository
VASILEIOS, Mezaris

× VASILEIOS, Mezaris

en VASILEIOS, Mezaris

Search repository
DE NATALE, Francesco G. B.

× DE NATALE, Francesco G. B.

en DE NATALE, Francesco G. B.


Search repository
室蘭工業大学研究者データベースへのリンク
表示名 太田 香(OTA Kaoru)
URL http://rdsoran.muroran-it.ac.jp/html/100000140_ja.html
抄録
内容記述タイプ Abstract
内容記述 Deep Learning (DL) has become a crucial technology for multimedia computing. It offers a powerful instrument to automatically produce high-level abstractions of complex multimedia data, which can be exploited in a number of applications, including object detection and recognition, speech-to- text, media retrieval, multimodal data analysis, and so on. The availability of affordable large-scale parallel processing architectures, and the sharing of effective open-source codes implementing the basic learning algorithms, caused a rapid diffusion of DL methodologies, bringing a number of new technologies and applications that outperform, in most cases, traditional machine learning technologies. In recent years, the possibility of implementing DL technologies on mobile devices has attracted significant attention. Thanks to this technology, portable devices may become smart objects capable of learning and acting. The path toward these exciting future scenarios, however, entangles a number of important research challenges. DL architectures and algorithms are hardly adapted to the storage and computation resources of a mobile device. Therefore, there is a need for new generations of mobile processors and chipsets, small footprint learning and inference algorithms, new models of collaborative and distributed processing, and a number of other fundamental building blocks. This survey reports the state of the art in this exciting research area, looking back to the evolution of neural networks, and arriving to the most recent results in terms of methodologies, technologies, and applications for mobile environments.
言語 en
出版者
出版者 ACM
言語 en
出版者版へのリンク
表示名 10.1145/3092831
URL https://doi.org/10.1145/3092831
DOI
関連タイプ isVersionOf
識別子タイプ DOI
関連識別子 10.1145/3092831
日本十進分類法
主題Scheme NDC
主題 007.1
ISSN
収録物識別子タイプ PISSN
収録物識別子 1551-6857
権利
言語 en
権利情報 © ACM, 2017. This is the author's version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version of Record was published in Volume 13 Issue 3s, ACM Transactions on Multimedia Computing, Communications, and Applications (TOMM), http://dx.doi.org/10.1145/3092831.
著者版フラグ
出版タイプ AM
出版タイプResource http://purl.org/coar/version/c_ab4af688f83e57aa
フォーマット
内容記述タイプ Other
内容記述 application/pdf
戻る
0
views
See details
Views

Versions

Ver.1 2023-06-19 11:16:29.479241
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR 2.0
  • OAI-PMH JPCOAR 1.0
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3