WEKO3
アイテム
室内モデル実験と小規模フィールド試験による効 果的な石炭地下ガス化(UCG)に関する基礎研究
https://doi.org/10.15118/00005098
https://doi.org/10.15118/00005098dfe2180f-1220-4a2f-b673-3c90b2078403
名前 / ファイル | ライセンス | アクション |
---|---|---|
A343 (8.8 MB)
|
|
|
A343_summary (392.5 kB)
|
|
Item type | 学位論文 / Thesis or Dissertation(1) | |||||
---|---|---|---|---|---|---|
公開日 | 2013-11-14 | |||||
タイトル | ||||||
タイトル | Fundamental Study on Efficient Underground Coal Gasification (UCG) by Laboratory Experiments and Small-scale Field Tests | |||||
言語 | en | |||||
タイトル | ||||||
タイトル | 室内モデル実験と小規模フィールド試験による効 果的な石炭地下ガス化(UCG)に関する基礎研究 | |||||
言語 | ja | |||||
言語 | ||||||
言語 | eng | |||||
資源タイプ | ||||||
資源タイプ識別子 | http://purl.org/coar/resource_type/c_db06 | |||||
資源タイプ | doctoral thesis | |||||
ID登録 | ||||||
ID登録 | 10.15118/00005098 | |||||
ID登録タイプ | JaLC | |||||
アクセス権 | ||||||
アクセス権 | open access | |||||
アクセス権URI | http://purl.org/coar/access_right/c_abf2 | |||||
著者 |
蘇, 発強
× 蘇, 発強 |
|||||
抄録 | ||||||
内容記述タイプ | Abstract | |||||
内容記述 | The main purpose of this study is to propose an efficient scheme of underground coal gasification (UCG) under the real-time controlling system, bases on the laboratory and small-scale field studies. In the UCG process, cavity growth with crack extension inside the coal seam is an important phenomenon that directly influences gasification efficiency and safety. An efficient and environmental UCG system relies upon the precise control and evaluation of the gasification zone. The effects of the feed temperature, direction of the stratified plane, and inherent microcracks (cleats) in coal and crack extension were investigated using some heating experiments performed using plate-shaped and cylindrical coal specimens. To monitor the failure process and measure the microcrack distribution inside the coal specimen before and after heating, acoustic emission (AE) measurements and X-ray CT were applied. It was demonstrated that many microcracks developed inside the coal with AE activity during heating. The temperature gradient and direction of the stratified plane and fire face affect the crack generation and extension, that is, most of the cracks initiated and developed along the stratified plane. To investigate the influence of gasification agents and operational parameters on cavity growth and gasification efficient, the laboratory UCG model experiments using coal blocks and two small-scale filed tests were conducted. AE activity, temperature profile and product gas composition were obtained for evaluating the gasification effects and gas energy recovery. The crack distribution models by AE source locations and moment tensor analysis are also compared with the cavity images of UCG models. Consequently, positive correlation was found between the temperature variation, crack extension, and AE activities. It was also concluded that sustained gasification and sufficient gaseous calorific values (estimated by stoichiometric approach) obtained using pure oxygen, that is, the cases of linking-hole UCG yielded average calorific values as high as 9.1MJ/m3 (Lab.), and 11.6 MJ/m3 (Field.). However, the coaxial-hole cases yielded an average calorific value of gas produced as only 5.8, 2.65, 4.3, MJ/m3 (Lab.), and 6.01 MJ/m3 (Field.). It was considered that the difference caused by the growth of combustion zone and the direction of stratified plane. Through a series of laboratory experiments and field tests, it was found that the fracturing activity around the gasification zone is a key for efficient and safety UCG system. Therefore, the fracturing activity should be controlled by the AE monitoring and the flow rate of injection agents gases in a proposed UCG system. | |||||
言語 | en | |||||
抄録 | ||||||
内容記述タイプ | Abstract | |||||
抄録 | ||||||
内容記述タイプ | Abstract | |||||
内容記述 | 本研究の目的は,室内実験と小規模な現場試験より,リアルタイム制御が可能な効果的な石炭地下ガス化(UCG)システムを提案することにある。UCGにおいては,炭層内のき裂進展に伴う燃焼空洞の成長が重要であり,これがガス化の効率や安全性に大きく影響する。すなわち,効果的で環境負荷の少ないUCGシステムを確立するためには,ガス化領域の評価と精細な制御が不可欠である。熱履歴が炭層内の潜在き裂(炭理)や成層面方向,き裂の進展に与える影響を調べるために,板状と円柱状供試体の加熱実験を行った。石炭供試体の熱破壊過程を監視し,熱履歴を受ける前後の構造変化を調べるために,AE (Acoustic Emission)計測とマイクロフォーカス3次元X線CTを用いた。石炭を加熱すると,熱応力によりAEを伴う微小き裂が多数発生した。分析の結果,熱勾配と成層面方向が供試体のき裂発生や進展に大きく影響することが明らかになった。その際,多くのき裂は成層面に沿って発生,進展することがわかった。次に,ガス化効率やガス化空洞の成長に影響を与える注入ガスなどのパラメータを調べるために,石炭ブロックを用いたUCGモデル実験と,小規模現場試験を行った。ここでは,ガス化の効率とガス化回収エネルギーを評価するために,AE活動や温度分布の変化,生産ガスの成分濃度等を計測した。また,AE震源標定とモーメント・テンソル解析によるき裂分布モデルと燃焼空洞周辺画像との比較も行った。その結果,温度変化とき裂進展,およびAE活動との間には,相関が認められた。また,純酸素を供給した際には,安定したガス化が持続し,充分な発熱量(化学定量的手法による推定)を得ることができた。リンキング方式のモデルでは,平均発熱量として9.1MJ/m3(室内実験)以上になり,現場試験では11.6 MJ/m3となった。しかしながら,同軸型モデルの場合には,5.8,2.65,4.3 MJ/m3(室内実験)と6.01 MJ/m3(現場試験)となり,この違いは,炭層内の成層面方向や燃焼領域の成長の違いにより生じたと考えられる。一連の室内実験や小規模現場試験の結果を通じて,効果的で安全なUCGシステムにおいては,ガス化領域周辺の破壊活動が重要であることがわかった。この結果に基づき,破壊活動をAE計測により監視し,注入ガスの流量等によりガス化領域の破壊を制御するシステムを提案した。 | |||||
言語 | ja | |||||
学位授与機関 | ||||||
学位授与機関識別子Scheme | kakenhi | |||||
学位授与機関識別子 | 10103 | |||||
言語 | ja | |||||
学位授与機関名 | 室蘭工業大学 | |||||
言語 | en | |||||
学位授与機関名 | Muroran Institute of Technology | |||||
学位名 | ||||||
言語 | ja | |||||
学位名 | 博士(工学) | |||||
学位の種別 | ||||||
言語 | ja | |||||
値 | 課程博士 | |||||
学位授与番号 | ||||||
学位授与番号 | 甲第343号 | |||||
報告番号 | ||||||
言語 | ja | |||||
値 | 甲第343号 | |||||
学位記番号 | ||||||
言語 | ja | |||||
値 | 博甲第343号 | |||||
学位授与年月日 | ||||||
学位授与年月日 | 2013-09-26 | |||||
著者版フラグ | ||||||
出版タイプ | VoR | |||||
出版タイプResource | http://purl.org/coar/version/c_970fb48d4fbd8a85 | |||||
フォーマット | ||||||
内容記述タイプ | Other | |||||
内容記述 | application/pdf |