Item type |
学術雑誌論文 / Journal Article.(1) |
公開日 |
2019-06-26 |
書誌情報 |
en : IEEE Communications Magazine
巻 56,
号 5,
p. 124-129,
発行日 2018-05-17
|
タイトル |
|
|
タイトル |
Learning Human Activities through Wi-Fi Channel State Information with Multiple Access Points |
|
言語 |
en |
言語 |
|
|
言語 |
eng |
キーワード |
|
|
言語 |
en |
|
主題Scheme |
Other |
|
主題 |
Wireless fidelity |
キーワード |
|
|
言語 |
en |
|
主題Scheme |
Other |
|
主題 |
Activity recognition |
キーワード |
|
|
言語 |
en |
|
主題Scheme |
Other |
|
主題 |
Machine learning |
キーワード |
|
|
言語 |
en |
|
主題Scheme |
Other |
|
主題 |
Data structures |
キーワード |
|
|
言語 |
en |
|
主題Scheme |
Other |
|
主題 |
Training |
キーワード |
|
|
言語 |
en |
|
主題Scheme |
Other |
|
主題 |
Data models |
キーワード |
|
|
言語 |
en |
|
主題Scheme |
Other |
|
主題 |
Learning systems |
キーワード |
|
|
言語 |
en |
|
主題Scheme |
Other |
|
主題 |
Behavioral sciences |
キーワード |
|
|
言語 |
en |
|
主題Scheme |
Other |
|
主題 |
Channel state estimation |
資源タイプ |
|
|
資源タイプ識別子 |
http://purl.org/coar/resource_type/c_6501 |
|
資源タイプ |
journal article |
アクセス権 |
|
|
アクセス権 |
open access |
|
アクセス権URI |
http://purl.org/coar/access_right/c_abf2 |
著者 |
李, 鶴
太田, 香
董, 冕雄
GUO, Minyi
|
室蘭工業大学研究者データベースへのリンク |
|
|
表示名 |
李 鶴(LI He) |
|
URL |
http://rdsoran.muroran-it.ac.jp/html/200000181_ja.html |
室蘭工業大学研究者データベースへのリンク |
|
|
表示名 |
太田 香(OTA Kaoru) |
|
URL |
http://rdsoran.muroran-it.ac.jp/html/100000140_ja.html |
室蘭工業大学研究者データベースへのリンク |
|
|
表示名 |
董 冕雄(DONG Mianxiong) |
|
URL |
http://rdsoran.muroran-it.ac.jp/html/100000145_ja.html |
抄録 |
|
|
内容記述タイプ |
Abstract |
|
内容記述 |
Wi-Fi channel state information (CSI) provides adequate information for recognizing and analyzing human activities. Because of the short distance and low transmit power of Wi-Fi communications, people usually deploy multiple access points (APs) in a small area. Traditional Wi-Fi CSI-based human activity recognition methods adopt Wi-Fi CSI from a single AP, which is not very appropriate for a high-density Wi-Fi environment. In this article, we propose a learning method that analyzes the CSI of multiple APs in a small area to detect and recognize human activities. We introduce a deep learning model to process complex and large CSI from multiple APs. From extensive experiment results, our method performs better than other solutions in a given environment where multiple Wi-Fi APs exist. |
|
言語 |
en |
出版者 |
|
|
出版者 |
IEEE |
|
言語 |
en |
出版者版へのリンク |
|
|
表示名 |
10.1109/MCOM.2018.1700083 |
|
URL |
https://doi.org/10.1109/MCOM.2018.1700083 |
DOI |
|
|
関連タイプ |
isVersionOf |
|
|
識別子タイプ |
DOI |
|
|
関連識別子 |
10.1109/MCOM.2018.1700083 |
日本十進分類法 |
|
|
主題Scheme |
NDC |
|
主題 |
007 |
ISSN |
|
|
収録物識別子タイプ |
PISSN |
|
収録物識別子 |
0163-6804 |
権利 |
|
|
言語 |
en |
|
権利情報 |
© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. |
著者版フラグ |
|
|
出版タイプ |
AM |
|
出版タイプResource |
http://purl.org/coar/version/c_ab4af688f83e57aa |
フォーマット |
|
|
内容記述タイプ |
Other |
|
内容記述 |
application/pdf |